Differentiability of quasiconvex functions on separable Banach spaces
نویسندگان
چکیده
منابع مشابه
Differentiability of Cone-monotone Functions on Separable Banach Space
Motivated by applications to (directionally) Lipschitz functions, we provide a general result on the almost everywhere Gâteaux differentiability of real-valued functions on separable Banach spaces, when the function is monotone with respect to an ordering induced by a convex cone with nonempty interior. This seemingly arduous restriction is useful, since it covers the case of directionally Lips...
متن کاملOn Fréchet differentiability of convex functions on Banach spaces
Equivalent conditions for the separability of the range of the subdifferential of a given convex Lipschitz function f defined on a separable Banach space are studied. The conditions are in terms of a majorization of f by a C-smooth function, separability of the boundary for f or an approximation of f by Fréchet smooth convex functions.
متن کاملSecond Order Differentiability of Convex Functions in Banach Spaces
We present a second order differentiability theory for convex functions on Banach spaces.
متن کاملOn Polar Cones and Differentiability in Reflexive Banach Spaces
Let $X$ be a Banach space, $Csubset X$ be a closed convex set included in a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set $C$, so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...
متن کاملLfc Bumps on Separable Banach Spaces
In this note we construct a C∞-smooth, LFC (Locally depending on Finitely many Coordinates) bump function, in every separable Banach space admitting a continuous, LFC bump function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2015
ISSN: 0021-2172,1565-8511
DOI: 10.1007/s11856-015-1170-z